EMV+® 731 SERIES

Specifically Designed for the Military
Specifically Designed for the Military
The 731 Series EMV+, unlike other military transport ventilators that are really only modified commercial devices, is uniquely designed to meet the needs of military users in the U.S. and around the world. The ZOLL EMV+ builds upon Impact Instrumentation’s legacy Uni-Vent 754 design. And with over 20 years of superior ventilator performance, the EMV+ continues in that tradition. Designed with input from all branches of the U.S. military, as well as militaries worldwide, the EMV+ meets the today’s enroute care mission.

Designed to Meet Military Standards
Military transport ventilators must meet the stringent requirements of the Joint Enroute Care Equipment Test Standard (JECETS). The ZOLL EMV+, unlike other military transport ventilators, is the ONLY device cleared for use in military vehicles (air, land or sea) without ANY waivers. Automatic altitude compensation and proper tidal volume delivery from -2000 to 25,000 feet makes the EMV+ the benchmark in transport ventilation. The EMV+ can be removed from extreme storage temperatures and immediately placed into operation with full functionality. Other ventilators may take 30 to 60 minutes to warm up and operate effectively.1

Ease of Use
A transport ventilator must be easy to operate in the most challenging environments. The ZOLL EMV+ is designed to support the operator, no matter his or her background, during all phases of enroute care. Smart Help™, a patient-focused real-time guide for alarm management, prioritizes alarms and helps the provider maintain safe and effective ventilation. With Silent/Dark Mode, the device produces no audible alarms or visible light. Users are alerted to alarms using an infrared light emitter in the Alarm LED array.

Versatility with Standard Military Equipment
The ZOLL EMV+ incorporates a specially developed radial compressor that offers significant advantages over commercial turbine-based systems. ZOLL’s efficient EMV+ compressor reduces battery consumption and conserves oxygen. Oxygen, from both high- and low-pressure sources, is delivered to the patient; no oxygen is wasted as it is with ventilators that use bias flow.